SNAP: Proximity Detection with Single-Antenna IoT Devices

THaW graduate Tim Pierson will present SNAP, a method for proximity detection with single-antenna IoT devices at MobiCom in October.

SNAP - Likelihood of declaring proximityAbstract: Providing secure communications between wireless devices that encounter each other on an ad-hoc basis is a challenge that has not yet been fully addressed. In these cases, close physical proximity among devices that have never shared a secret key is sometimes used as a basis of trust; devices in close proximity are deemed trustworthy while more distant devices are viewed as potential adversaries. Because radio waves are invisible, however, a user may believe a wireless device is communicating with a nearby device when in fact the user’s device is communicating with a distant adversary. Researchers have previously proposed methods for multi-antenna devices to ascertain physical proximity with other devices, but devices with a single antenna, such as those commonly used in the Internet of Things, cannot take advantage of these techniques.

We present theoretical and practical evaluation of a method called SNAP — SiNgle Antenna Proximity — that allows a single-antenna Wi-Fi device to quickly determine proximity with another Wi-Fi device. Our proximity detection technique leverages the repeating nature Wi-Fi’s preamble and the behavior of a signal in a transmitting antenna’s near-field region to detect proximity with high probability; SNAP never falsely declares proximity at ranges longer than 14 cm.

In Proceedings of the ACM International Conference on Mobile Computing and Networking (MobiCom), Article #1-15, October 2019. ACM Press. DOI 10.1145/3300061.3300120.

This entry was posted in publication and tagged , , , by David Kotz. Bookmark the permalink.

About David Kotz

David Kotz is the Champion International Professor in the Department of Computer Science. He previously served as Interim Provost, as Associate Dean of the Faculty for the Sciences, as the Executive Director of the Institute for Security Technology Studies, and on the US Healthcare IT Policy Committee. His research interests include security and privacy, pervasive computing for healthcare, and wireless networks. He has published over 175 refereed journal and conference papers and obtained over $66m in grant funding. He is an Fellow of the IEEE, a Distinguished Member of the ACM, a 2008 Fulbright Fellow to India, and an elected member of Phi Beta Kappa. After receiving his A.B. in Computer Science and Physics from Dartmouth in 1986, he completed his Ph.D in Computer Science from Duke University in 1991 and returned to Dartmouth to join the faculty. For more information see http://www.cs.dartmouth.edu/~dfk/.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s