THaW work on contact tracing

Early THaW research on contact tracing is finding new relevance as groups across the US and around the world scramble to develop privacy-preserving contact-tracing apps.  Notable app efforts include DP-3TPEPP-PT, and SafePaths.  All of those efforts focus on privacy-preserving apps for retrospective notification of persons who may have had “contact” with a person later determined to be ill with an infectious disease, where “contact” occurs when spending time in close proximity to the infected person.  THaW student Aarathi Prasad went further, devising a system that could also detect “close encounters”, e.g., for those who may have visited a place soon after the infected person left.  Some diseases, including perhaps the coronavirus, can linger in the air or on surfaces for hours.

The lead author on THaW’s work, Aarathi Prasad, is now a professor at Skidmore College, which just posted an extended story about her work. Her work was originally published in the paper below.

Aarathi Prasad and David Kotz. ENACT: Encounter-based Architecture for Contact Tracing. Proceedings of the ACM Workshop on Physical Analytics (WPA), pages 37–42. ACM Press, June 2017. doi:10.1145/3092305.3092310. ©Copyright ACM.

Abstract: Location-based sharing services allow people to connect with others who are near them, or with whom they shared a past encounter. Suppose it were also possible to connect with people who were at the same location but at a different time – we define this scenario as a close encounter, i.e., an incident of spatial and temporal proximity. By detecting close encounters, a person infected with a contagious disease could alert others to whom they may have spread the virus. We designed a smartphone-based system that allows people infected with a contagious virus to send alerts to other users who may have been exposed to the same virus due to a close encounter. We address three challenges: finding devices in close encounters with minimal changes to existing infrastructure, ensuring authenticity of alerts, and protecting privacy of all users. Finally, we also consider the challenges of a real-world deployment.

This entry was posted in publication, Related news and tagged , , , by David Kotz. Bookmark the permalink.

About David Kotz

David Kotz is the International Paper Professor in the Department of Computer Science and, presently, Visiting Professor in the Center for Digital Health Interventions at ETH Zurich. He previously served as Interim Provost, as Associate Dean of the Faculty for the Sciences, as the Executive Director of the Institute for Security Technology Studies, and on the US Healthcare IT Policy Committee. His research interests include security and privacy, pervasive computing for healthcare, and wireless networks. He has published over 200 refereed papers, obtained over $67m in grant funding, and mentored nearly 100 research students. He is a Fellow of the IEEE, a Distinguished Member of the ACM, a 2008 Fulbright Fellow to India, and an elected member of Phi Beta Kappa. After receiving his A.B. in Computer Science and Physics from Dartmouth in 1986, he completed his Ph.D in Computer Science from Duke University in 1991 and returned to Dartmouth to join the faculty. For more information see http://www.cs.dartmouth.edu/~dfk/.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s