THaW’s Eric Johnson on recent health system cyberattacks

Eric Johnson
Eric Johnson, PhD and dean of Vanderbilt University’s Owen Graduate School of Management

Cyberattacks targeting healthcare systems have been growing in prevalence and are wreaking more havoc with the healthcare industry’s increased dependence on electronic systems. Cyberattacks such as denial-of-service attacks, can have immediate impact on patient care by leaving medical staff without important patient records. The impacts don’t end there. With healthcare systems increasing their cybersecurity protocols in the aftermath of a cyberattack, patient information can be harder to access for those who should be accessing that information. Johnson’s research with co-author S.J. Choi, PhD, shows that at hospitals where security protocols slowed computer access by just a minute or so, people who came in with a heart attack were more likely to die. “When I talk to doctors about security, a lot of times they’re very negative,” Johnson said. “So they’re pretty far behind, and at this point, incredibly vulnerable.” It’s certainly not a stretch, Johnson says, to say that delays from a ransomware attack are likely to have more serious effects.

To read more about the recent cyberattacks on healthcare systems and coverage of THaW research on those topics, check out the THaW press page.

New THaW Paper on Recurring Device Verification

An IoT device user with a blood-pressure monitoring device should have the assurance that the device operates how a blood-pressure monitor should operate. If the monitor is connected to a measurement app that collects, stores, and reports data, but interacts in a way that is inconsistent with typical interactions for this type of device, there may be cause for concern. The reality of ubiquitous connectivity and frequent mobility gives rise to a myriad of opportunities for devices to be compromised. Thus, we argue that one-time, single-factor, device-to-device authentication (i.e., an initial pairing) is not enough, and that there must exist some mechanism to frequently (re-)verify the authenticity of devices and their connections.

In this paper we propose a device-to-device recurring authentication scheme – Verification of Interaction Authenticity (VIA) – that is based on evaluating characteristics of the communications (interactions) between devices. We adapt techniques from wireless traffic analysis and intrusion detection systems to develop behavioral models that capture typical, authentic device interactions (behavior); these models enable recurring verification of device behavior. 

To read more, check out the paper here.

Travis Peters, Timothy J. Pierson, Sougata Sen, José Camacho, and David Kotz. Recurring Verification of Interaction Authenticity Within Bluetooth Networks. Proceedings of the ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec 2021), pages 192–203. ACM, June 2021. doi:10.1145/3448300.3468287. ©

Light Commands: Laser-Based Audio Injection Attacks on Voice-Controllable Systems

A new THaW paper was published at USENIX Security last week. It describes using a laser at a distance of 110 meters to stimulate audio sensors on smart speakers and thereby insert audio commands that are accepted as coming from a legitimate user. Techniques for dealing with this vulnerability are proposed.

Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi, Daniel Genkin, and Kevin Fu. Light Commands: Laser-Based Audio Injection Attacks on Voice-Controllable Systems. In Proceedings of the USENIX Security Symposium (USENIX Security), pages 2631–2648, August 2020. USENIX Association.

Paper and video presentation at https://www.usenix.org/conference/usenixsecurity20/presentation/sugawara 

With a Laser, Researchers Say They Can Hack Alexa, Google Home or Siri

The New York Times just posted a story about this startling new research from Kevin Fu and his group, funded in part by THaW.  The research team posted more details here.

 

The Evolving Cyberthreat to Privacy

THaW’s A.J. Burns and Eric Johnson recently published a piece in IT Professional:

ABSTRACT: Cyberthreats create unique risks for organizations and individuals, especially regarding breaches of personally identifiable information (PII). However, relatively little research has examined hackings distinct impact on privacy. The authors analyze cyber breaches of PII and found that they are significantly larger compared to other breaches, showing that past breaches are useful for predicting future breaches.
Issue No. 03 – May./Jun. (2018 vol. 20)