New THaW Patent

The THaW team is pleased to announce one new patent derived from THaW research. For the complete list of patents, visit our Tech Transfer page.

Abstract: Apparatuses that provide for secure wireless communications between wireless devices under cover of one or more jamming signals. Each such apparatus includes at least one data antenna and at least one jamming antenna. During secure-communications operations, the apparatus transmits a data signal containing desired data via the at least one data antenna while also at least partially simultaneously transmitting a jamming signal via the at least one jamming antenna. When a target antenna of a target device is in close proximity to the data antenna and is closer to the data antenna than to the jamming antenna, the target device can successfully receive the desired data contained in the data signal because the data signal is sufficiently stronger than the jamming signal within a finite secure-communications envelope due to the Inverse Square Law of signal propagation. Various related methods and machine-executable instructions are also disclosed.

Image describes the steps to ensure secure wireless data transfer between devices.

Timothy J. Pierson, Ronald Peterson, and David Kotz. Apparatuses, Methods, and Software For Secure Short-Range Wireless Communication. U.S. Patent 11,153,026, October 19, 2021. Download from https://patents.google.com/patent/US11153026B2/en

See also: Timothy J. Pierson, Travis Peters, Ronald Peterson, and David Kotz. CloseTalker: secure, short-range ad hoc wireless communication. Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), pages 340–352. ACM, June 2019. doi:10.1145/3307334.3326100. [Details]

Professor Kevin Fu appointed Acting Director of Medical Device Cybersecurity at the U.S. FDA Center for Devices and Radiological Health (CDRH)

Kevin Fu, THaW PI from the University of Michigan, is heading to Washington D.C. for a one-year term as Acting Director of Medical Device Cybersecurity at the U.S. FDA Center for Devices and Radiological Health (CDRH). This role includes an appointment with the Digital Health Center of Excellence (DHCoE).The DHCoE fosters responsible and high-quality digital health innovation.

To learn more about the role, Professor Fu’s numerous achievements in the cross-section of health technologies and cybersecurity, as well as his other notable contributions, check out the University of Michigan’s official press release here.

Congratulations, Professor Fu!

THaW publications

cover sheet of the report

Seven years ago, the National Science Foundation’s Secure and Trustworthy Cyberspace program awarded a grant creating the Trustworthy Health and Wellness (THaW) project. Most project activities have now wound down, after publishing more than a hundred journal papers, conference papers, workshop contributions, dissertations, theses, patents, and more. We just released an annotated bibliography, with all the references organized in a Zotero library that provides ready access to citation materials and abstracts. In the annotated bibliography we organize papers by cluster (category), identify content tags, and give a brief annotation summarizing the work’s contribution. Thanks to Carl Landwehr for leading this important summary of THaW work!

LightTouch – Connecting Wearables to Ambient Displays

Connectivity reached new extremes, when wearable technologies enabled smart device communications to appear where analogue watches, rings, and vision-enhancing glasses used to sit. Risks of sensitive data being wrongly transmitted, as a result of malicious or non-malicious intent, grow alongside these new technologies. To ensure that this continued interconnectivity of smart devices and wearables is safe and secure, the THaW team devised, published, and patented LightTouch. This technology, conceptually compatible with existing smart bracelet and display designs, uses optical sensors on the smart device and digital radio links to create a shared secret key that enables the secure and private connection between devices.

LightTouch makes it easy for a person to securely connect their wearable device to a computerized device they encounter, for the purpose of viewing information from their device and possibly sharing that information with nearby acquaintances. To learn more, check out this recent Spotlight in IEEE Computer, or click the links below to read the journal article, the patent specifics, or the conference presentation.


Xiaohui Liang, Ronald Peterson, and David Kotz. Securely Connecting Wearables to Ambient Displays with User IntentIEEE Transactions on Dependable and Secure Computing 17(4), pages 676–690, July 2020. IEEE. DOI: 10.1109/TDSC.2018.2840979

Xiaohui Liang, Tianlong Yun, Ron Peterson, and David Kotz. Secure System For Coupling Wearable Devices To Computerized Devices with Displays, March 2020. USPTO; U.S. Patent 10,581,606; USPTO. Download from https://patents.google.com/patent/US20170279612A1/en — Priority date 2014-08-18, Grant date 2020-03-03.

Xiaohui Liang, Tianlong Yun, Ronald Peterson, and David Kotz. LightTouch: Securely Connecting Wearables to Ambient Displays with User Intent. In IEEE International Conference on Computer Communications (INFOCOM), May 2017. IEEE. DOI: 10.1109/INFOCOM.2017.8057210

#NSFStories

New THaW Patent

The THaW team is pleased to announce one new patent derived from THaW research. For the complete list of patents, visit our Tech Transfer page.

Abstract: Systems and methods are disclosed for providing a trusted computing environment that provides data security in commodity computing systems. Such systems and methods deploy a flexible architecture comprised of distributed trusted platform modules (TPMs) configured to establish a root-of-trust within a heterogeneous network environment comprised of non-TPM enabled IoT devices and legacy computing devices. A data traffic module is positioned between a local area network and one or more non-TPM enabled IoT devices and legacy computing devices, and is configured to control and monitor data communication among such IoT devices and legacy computing devices and from such IoT devices and legacy computing devices to external computers. The data traffic module supports attestation of the IoT devices and legacy computing devices, supports secure boot operations of the IoT devices and legacy computing devices, and provides tamper resistance to such IoT devices and legacy computing devices.

Kevin Kornegay and Willie Lee Thompson II. Decentralized Root-of-Trust Framework for Heterogeneous Networks, November 2020. Morgan State University; USPTO. Download from https://patents.google.com/patent/US20180196945A1/en

THaW graduates: where are they now?

As the THaW project draws to a close, we are proud to recognize the many students and postdocs who were involved in THaW research over the years. As noted below, they have moved on to positions in academia or industry. Unless otherwise noted, each is a PhD. (Please send any corrections or additions to David Kotz at info@thaw.org.)

New THaW patents

The THaW team is pleased to announce two new patents derived from THaW research, bringing the project total to five patents and one pending.  For the complete list, visit our Tech Transfer page.  The two new patents are described below.

  • March 2020: Xiaohui Liang, Tianlong Yun, Ron Peterson, and David Kotz. Secure System For Coupling Wearable Devices To Computerized Devices with Displays, March 2020. USPTO; U.S. Patent 10,581,606; USPTO. Download from https://patents.google.com/patent/US20170279612A1/enPriority date 2014-08-18, Grant date 2020-03-03. Patent describes a system enabling information from mobile health sensors (eg Fitbit) to be displayed onto nearby screens without being affected by local security threats. The scheme uses visible light sensor on the mobile device. See papers liang:lighttouch and liang:jlighttouch.
  • February 2020: Timothy J. Pierson, Xiaohui Liang, Ronald Peterson, and David Kotz. Apparatus for Securely Configuring A Target Device and Associated Methods, February 2020. U.S. Patent 10,574,298; USPTO. Download from https://patents.google.com/patent/US20180191403A1/enThis is a patent. Priority date 2015-06-23, Grant date 2020-02-25. Patent based on “Wanda” device, described in other publications. Device implements a scheme for single antenna wi-fi device to determine its proximity to another wi-fi device with which it is communicating, in order to assure it is not unwittingly communicating with a distant adversary device rather than a nearby device. See paper pierson:wanda.

Do Breach Remediation Efforts Affect Patient Outcomes?

THaW professor Eric Johnson was recently interviewed on the DataBreach Today podcast.  “How do hospitals’ efforts to bolster information security in the aftermath of data breaches potentially affect patient outcomes? Professor Eric Johnson of Vanderbilt University discusses recent research that shows a worrisome relationship between breach remediation and the delivery of timely patient care.”

You can find the 14-minute podcast, and written summary, on DataBreachToday.com.

The podcast discusses a recent THaW paper:

Sung J. Choi, M. Eric Johnson, and Christoph U. Lehmann. Data breach remediation efforts and their implications for hospital quality. Health Services Research 54(5), pages 971–980, September 2019. John Wiley & Sons. DOI: 10.1111/1475-6773.13203

Proximity detection with single-antenna IoT devices

ACM SIGMOBILE has posted a video of our presentation of the THaW paper Proximity detection with single-antenna IoT devices at MobiCom’19.  Abstract below the video.

Timothy J. Pierson, Travis Peters, Ronald Peterson, and David Kotz. Proximity Detection with Single-Antenna IoT Devices. In Proceedings of the ACM International Conference on Mobile Computing and Networking (MobiCom), Article #21, October 2019. ACM Press. DOI 10.1145/3300061.3300120.

Abstract: Providing secure communications between wireless devices that encounter each other on an ad-hoc basis is a challenge that has not yet been fully addressed. In these cases, close physical proximity among devices that have never shared a secret key is sometimes used as a basis of trust; devices in close proximity are deemed trustworthy while more distant devices are viewed as potential adversaries. Because radio waves are invisible, however, a user may believe a wireless device is communicating with a nearby device when in fact the user’s device is communicating with a distant adversary. Researchers have previously proposed methods for multi-antenna devices to ascertain physical proximity with other devices, but devices with a single antenna, such as those commonly used in the Internet of Things, cannot take advantage of these techniques.

We present theoretical and practical evaluation of a method called SNAP – SiNgle Antenna Proximity – that allows a single-antenna Wi-Fi device to quickly determine proximity with another Wi-Fi device. Our proximity detection technique leverages the repeating nature Wi-Fi’s preamble and the behavior of a signal in a transmitting antenna’s near-field region to detect proximity with high probability; SNAP never falsely declares proximity at ranges longer than 14 cm.

THaW’s Klara Nahrstedt named AAAS Fellow

THaW is proud to share news that Prof. Klara Nahrstedt, co-PI of the THaW project, has been recognized by the American Academy for the Advancement of Science as a Fellow of the AAAS.  To be named an AAAS Fellow is one of the most prestigious recognitions in the science community.  Congratulations to Klara!

More about her recognition here.

klara_nahrstedt_stairwell_342x342

photo by L. Brian Stauffer