VibeRing: An out-of-band channel for sharing secret keys

Health-oriented smart devices, such as a blood-glucose monitor, collect meaningful data when they are in use and in physical contact with their user. The smart device’s (“smartThing’s”) wireless connectivity allows it to transfer that data to its user’s trusted device, for example a smartphone. However, an adversary could impersonate the user and bootstrap a communication channel with the smartThing while the smartThing is being used by an oblivious legitimate user. 

To address this problem, in this paper, we investigate the use of vibration, generated by a smartRing, as an out-of-band communication channel to unobtrusively share a secret with a smartThing. This exchanged secret can be used to bootstrap a secure wireless channel over which the smartphone (or another trusted device) and the smartThing can communicate. We present the design, implementation, and evaluation of this system, which we call VibeRing. We describe the hardware and software details of the smartThing and smartRing. Through a user study we demonstrate that it is possible to share a secret with various objects quickly, accurately and securely as compared to several existing techniques.

Sougata Sen and David Kotz. VibeRing: Using vibrations from a smart ring as an out-of-band channel for sharing secret keys. Journal of Pervasive and Mobile Computing, volume 78, article 101505, 16 pages. Elsevier, December 2021. doi:10.1016/j.pmcj.2021.101505. ©Copyright Elsevier. Revision of sen:vibering.

LightTouch – Connecting Wearables to Ambient Displays

Connectivity reached new extremes, when wearable technologies enabled smart device communications to appear where analogue watches, rings, and vision-enhancing glasses used to sit. Risks of sensitive data being wrongly transmitted, as a result of malicious or non-malicious intent, grow alongside these new technologies. To ensure that this continued interconnectivity of smart devices and wearables is safe and secure, the THaW team devised, published, and patented LightTouch. This technology, conceptually compatible with existing smart bracelet and display designs, uses optical sensors on the smart device and digital radio links to create a shared secret key that enables the secure and private connection between devices.

LightTouch makes it easy for a person to securely connect their wearable device to a computerized device they encounter, for the purpose of viewing information from their device and possibly sharing that information with nearby acquaintances. To learn more, check out this recent Spotlight in IEEE Computer, or click the links below to read the journal article, the patent specifics, or the conference presentation.


Xiaohui Liang, Ronald Peterson, and David Kotz. Securely Connecting Wearables to Ambient Displays with User IntentIEEE Transactions on Dependable and Secure Computing 17(4), pages 676–690, July 2020. IEEE. DOI: 10.1109/TDSC.2018.2840979

Xiaohui Liang, Tianlong Yun, Ron Peterson, and David Kotz. Secure System For Coupling Wearable Devices To Computerized Devices with Displays, March 2020. USPTO; U.S. Patent 10,581,606; USPTO. Download from https://patents.google.com/patent/US20170279612A1/en — Priority date 2014-08-18, Grant date 2020-03-03.

Xiaohui Liang, Tianlong Yun, Ronald Peterson, and David Kotz. LightTouch: Securely Connecting Wearables to Ambient Displays with User Intent. In IEEE International Conference on Computer Communications (INFOCOM), May 2017. IEEE. DOI: 10.1109/INFOCOM.2017.8057210

#NSFStories

VibeRing: Using vibrations from a smart ring as an out-of-band channel for sharing secret keys

A recent THaW paper was nominated for Best Paper at the IoT conference:

With the rapid growth in the number of Internet of Things (IoT) devices with wireless communication capabilities, and sensitive information collection capabilities, it is becoming increasingly necessary to ensure that these devices communicate securely with only authorized devices. A major requirement of this secure communication is to ensure that both the devices share a secret, which can be used for secure pairing and encrypted communication. Manually imparting this secret to these devices becomes an unnecessary overhead, especially when the device interaction is transient. In this work, we empirically investigate the possibility of using an out-of-band communication channel – vibration, generated by a custom smartRing – to share a secret with a compatible IoT device. Through a user study with 12 participants we show that in the best case we can exchange 85.9% messages successfully. Our technique demonstrates the possibility of sharing messages accurately, quickly, and securely as compared to several existing techniques.

To learn more, check out the video presentation here.

Sougata Sen and David Kotz. VibeRing: Using vibrations from a smart ring as an out-of-band channel for sharing secret keys. In Proceedings of the International Conference on the Internet of Things (IoT), page Article#13 (8 pages), October 2020. ACM. DOI: 10.1145/3341162.3343818

THaW Project LightTouch Selected For INFOCOM

THaW Researchers Xiaohui Liang, Tianlong Yun, Ronald Peterson, and David Kotz have been researching new methods for connecting wearables to external screens. Their paper, LightTouch: Securely Connecting Wearables to Ambient Displays with User Intent, has been accepted to INFOCOM 2017. In it, they explore a security system that uses a screen’s brightness level to ensure secure connection between screen and device. Moreover, they also address additional screen-based counter measures that can be taken to further secure the protocol. For more information and to read the paper, click the link below.

liang-lighttouch