Temperature sensors may be vulnerable in safety-critical systems

Recent THaW research has demonstrated that temperature control systems, particularly in sensitive devices like infant incubators or industrial thermal chambers, can be affected by (and thus manipulated by) electromagnetic waves. The team included Prof. Kevin Fu and Research Investigator Sara Rampazzi from THaW, and Prof. Xiali Hei and PhD student Yazhou Tu from the University of Louisiana at Lafayette.

The vulnerability is due to the weakness of analog sensing components. In particular, the change in the measured temperature is due to an unintended rectification effect in amplifiers induced by injecting specific electromagnetic interferences though their temperature sensors.

The researchers demonstrate how it is possible remotely manipulate the temperature sensor measurements of critical devices, such as infant incubators, thermal chambers, and 3D printers. “In infant incubators for example, changing temperature sensor measurement can raise the risk of temperature-related health issues in infants, such as hyperthermia and hypothermia, which in turn can lead in extreme cases to hypoxia, and neurological complications.” Rampazzi says.

In a recent paper describing the attack method, the authors also describe a defense against the vulnerability, proposing a prototype of an analog anomaly detector to identify unintended interferences in the affected frequency range.

The paper was presented this month at the ACM Conference on Computer and Communications Security (CCS), and is available at DOI 10.1145/3319535.3354195.

Short video demos of the effect on an infant incubator are available on YouTube.

 

thermbanner.jpg
This entry was posted in Project news, publication and tagged , , , , , , by David Kotz. Bookmark the permalink.

About David Kotz

David Kotz is the Provost, the Pat and John Rosenwald Professor in the Department of Computer Science, and the Director of Emerging Technologies and Data Analytics in the Center for Technology and Behavioral Health, all at Dartmouth College. He previously served as Associate Dean of the Faculty for the Sciences and as the Executive Director of the Institute for Security Technology Studies. His research interests include security and privacy in smart homes, pervasive computing for healthcare, and wireless networks. He has published over 240 refereed papers, obtained $89m in grant funding, and mentored nearly 100 research students. He is an ACM Fellow, an IEEE Fellow, a 2008 Fulbright Fellow to India, a 2019 Visiting Professor at ETH Zürich, and an elected member of Phi Beta Kappa. He received his AB in Computer Science and Physics from Dartmouth in 1986, and his PhD in Computer Science from Duke University in 1991.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s