Recent THaW research has demonstrated that temperature control systems, particularly in sensitive devices like infant incubators or industrial thermal chambers, can be affected by (and thus manipulated by) electromagnetic waves. The team included Prof. Kevin Fu and Research Investigator Sara Rampazzi from THaW, and Prof. Xiali Hei and PhD student Yazhou Tu from the University of Louisiana at Lafayette.
The vulnerability is due to the weakness of analog sensing components. In particular, the change in the measured temperature is due to an unintended rectification effect in amplifiers induced by injecting specific electromagnetic interferences though their temperature sensors.
The researchers demonstrate how it is possible remotely manipulate the temperature sensor measurements of critical devices, such as infant incubators, thermal chambers, and 3D printers. “In infant incubators for example, changing temperature sensor measurement can raise the risk of temperature-related health issues in infants, such as hyperthermia and hypothermia, which in turn can lead in extreme cases to hypoxia, and neurological complications.” Rampazzi says.
In a recent paper describing the attack method, the authors also describe a defense against the vulnerability, proposing a prototype of an analog anomaly detector to identify unintended interferences in the affected frequency range.
The paper was presented this month at the ACM Conference on Computer and Communications Security (CCS), and is available at DOI 10.1145/3319535.3354195.
Short video demos of the effect on an infant incubator are available on YouTube.
