Angel Rodriguez, Sara Rampazzi, and Kevin Fu recently had a poster accepted titled IoT Two-Factor Neurometric Authentication System using Wearable EEG:
Abstract: The IoT authentication space suffers from various user-sided drawbacks, such as poor password choice, the accidental publication of biometric data, and the practice of disabling authentication completely. This is commonly attributed to the “Security vs Usability” problem – generally, the stronger the authentication, the more inconvenient it is to perform and maintain for the user. Neurometric authentication offers a compelling resistance to eavesdropping and replay attacks, and the ability for a user to simply “think to unlock”. Furthermore, the recent increase in popularity of consumer EEG devices, as well as new research demonstrating its accuracy, have made EEG-based neurometric authentication much more viable.
Using a Support Vector Machine and one-time tokens, we present a secure two-factor authentication method, that allows a user to authenticate multiple IoT devices. We perform preliminary trials on the Psyionet BCI dataset and demonstrate a qualitative comparison of extracted EEG feature sets.
Left: IoT two factor authentication scheme – (1) After internal user-thought authentication, the device securely sends a one-time token to the IoT device. (2) The IoT device securely communicates with a server to verify the token. (3) If the token is verified, the server sends a secure confirmation reply to the IoT device, authenticating the user. Right: Proof of concept using the Psyionet BCI dataset – The top row shows the averaged covariance matrices of the extracted features of two different users thinking about the same mental task (imagining closing their fists). The bottom row shows similar features for one user thinking of two different tasks (imagine closing both fists vs both feet).
Proceedings of the IEEE Workshop on the Internet of Safe Things (SafeThings), May 2019. Accepted, publication pending.